
20190123, 20190125

We have learned that NP-Complete problems are almost certainly not solvable

in polynomial time (by which I mean: virtually all researchers believe that we

will never find a polynomial time algorithm for any NP-Complete problem).

However, NP-Complete problems are all solvable by a simple algorithm: try

every possible solution to see if any of them works. Since the number of

potential solutions to examine can be exponentially large (for example, a

Boolean expression with n literals has possible truth assignments), this Brute

Force and Ignorance approach is not a polynomial time algorithm.

Even though we cannot do better than exponential time complexity for solving

NP-Complete problems, we can still apply some smarts to improve the

algorithms. As an example, we will now examine a way to greatly improve on

the BFI algorithm for Subset Sum.

The Subset Sum problem: Given a set S of n integers and a target value k, does

S have a subset that sums to k?

The BFI algorithm simply examines every subset of S to see if any of them sums

to the target value k. Since S has subsets, this algorithm runs in O() time.

(You may wonder why I don't include a time factor for computing the sum of

each subset - in fact, the sum of each subset can be computed in constant time.

Exercise: see if you can see how to do this.)

To see how we can improve on this, we first need to consider a much simpler

problem.

Pair-Sum: Given a set S of n integers and a target integer k, does S contain a pair

of values that sum to k?

Pair-Sum is obviously solvable in polynomial time: we can simply compute the

sum of each pair of values in S, of which there are

which is in

But a better algorithm for Pair-Sum is to start by sorting S, then work through

the sorted list from both ends, eliminating values when we determine they

cannot be in a pair that sums to k.

Suppose the sorted set looks like this (drawn as if it is stored in an array)

We start by adding computing . There are three possibilities:

 : in this case we can stop … we have found a pair that sums to k.

 : in this case we know cannot be in a solution – adding together

with any other element of S will give a total < k.

 : in this case we know cannot be in a solution – adding together

with any other element of S will give a total > k

Thus after one addition, we either stop with a solution or we eliminate either the

smallest or the largest element of the set. We can now continue in exactly the

same way on the remaining n-1 elements.

In pseudo-code, this algorithm looks like this:

Given S and k:
Sort S # S is indexed from 1 to n because I don’t like

0-based addressing
Sorting takes O(n*log n) time

left = 1
right = n
while left < right:

t = S[left] + S[right]
if t == k: Report “Yes” and exit
elsif t < k: left++
else: right++

Report “No” and exit

The loop executes < n times and each iteration takes constant time, so the

algorithm runs in O(n*log n) + O(n) time, which simplifies to O(n*log n)

So we have reduced the O() time of the naïve algorithm to O(n*log n) for this

clever algorithm. It may not seem like much but for large values of n this is a

huge improvement.

But we still haven’t seen how to improve the algorithm for the general subset

sum problem! Bear with me for one more preliminary problem.

2-Set Pair-Sum: Given sets X and Y with n elements in each set, and a target

integer k, is there an and a such that x + y = k?

It should be clear that we can solve 2-Set Pair-Sum in O(n log n) time. We sort

both sets, then start by letting . As before, if we are done, if

 we can eliminate , and if we can eliminate

At last we are ready to attack Subset Sum in all its glory. This very clever

method was first described by Horowitz and Sahni.

Given set S and target integer k:

Split S arbitrarily into two equal sized subsets and .
 #If S has an odd number of elements, make the split as even as possible.
 #It doesn't matter which of or is bigger in this case.

If S does have a subset T that sums to k, there are three possibilities:
- all the elements of T are in
- all the elements of T are in
- some elements of T are in and some are in

Compute the sums of all subsets of . Let this set of sums be
Compute the sums of all subsets of . Let this set of sums be

if k or k :
report "Yes" and stop # this takes care of the first two

possibilities
else:

we need to determine if there is a subset of that

can be combined with a subset of to give a sum of k.
This is equivalent to asking if there is an and

and a such that … it is an instance of
the 2-Set Pair-Sum problem

 Sort into ascending order
- label the elements ...

 Sort into ascending order
- label the elements

 Let left = 1 and let right = length()
 while left length() and right 1:

t = [left] + [right]
if t == k:

report "Yes" and exit
elsif t < k:

 # this means that [left] is too small to be in any
solution to the problem
left++

else:
 # this means that [right] is too big to be in any

solution
right--

report "No"

You should convince yourself that this algorithm correctly solves Subset Sum in

all cases, for “Yes” and “No” answers. We now determine its complexity.

Computing the sets and takes time since each of and has

elements. and each have elements. Sorting each of and takes

 time, which simplifies to . The loop iterates at

most times, doing constant-time work on each iteration.

Thus the dominant step is the sorting of and , and the entire algorithm

runs in time.

This is still exponential (some call it sub-exponential because the exponent is <

n) but it is way better than the BFI algorithm. This table shows the first few

values in the comparison (with n even, to make it easy on my brain).

2 4 4

4 16 16

6 48 64

8 128 256

10 320 1024

12 768 4096

What made this work? It was the result of splitting S into and , thereby

reducing the number of subsets we had to sum from to … and then

using the 2-Set Pair-Sum algorithm to eliminate combinations.

Some very interesting questions came up in class and after class:

Can we improve the efficiency even more by splitting S into a larger group

of smaller sets – such as each of size ? This sounds good – the

number of subsets we actually look at is reduced to . But now we have to

consider combining subsets from every combinition of (for

example, we need to check all sums containing one value from , one value

from and one from , and all sums containing one value from and one

value from , etc.) This balances out the time we saved by making the sets

smaller.

Can we improve the efficiency even more by using the same technique

recursively to see if or contains a subset that sums to k? Yes we can, but

these are not the time-critical steps of the algorithm. The step that looks for a

solution involving part of and part of will still have the same complexity.

Can we improve the efficiency even more by not only computing the sum

of the smallest value in and the largest value in , but also computing the

sum of the largest value in and the smallest value in ? Yes, this lets us

eliminate two values on each iteration, which cuts the maximum number of

iterations by a factor of 2. However we do twice as much work in each iteration

so it balances out.

Does that mean that this algorithm cannot be improved? Not at all!!! This is just

the best algorithm I know of for this problem – you could be the person who

discovers a better one.

(If you enjoy working on this kind of problem, here is a good one: “Powers of

2” Subset Sum. Given a collection of integers S, in which each element is a

power of 2 (repetitions allowed), and an integer k, does S have a subset that

sums to k? For example, . For this

instance the answer is “Yes” because . The question

is, Is this problem NP-Complete, or can you find a polynomial time algorithm

for it?)

Our next unit focuses on problems where dividing the problem into

subproblems then combining the solutions leads to efficient algorithms.

Divide and Conquer Algorithms

The Divide and Conquer Paradigm

To solve a problem of size n:

 If n is "small":

 solve the problem directly

 else:

 Subdivide the problem into two or more (usually disjoint) subproblems

 Solve each of the subproblems recursively

 Combine the subproblem solutions to get the solution to the original

problem

Examples of D&C algorithms are familiar to everyone who has studied

computing: binary search, Quicksort, and Mergesort are classic examples.

In our next class we will look at a possibly less-familiar application of D&C:

 determining if a tree contains a path of length k or more. (Note: the length of a

path is the number of edges in the path.)

This is a particularly interesting problem because the more general problem

“Given a graph G and an integer k, does G contain a path of length k?” is NP-

Complete. We will see that by restricting the problem to trees, we can solve it

very quickly.

