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We have learned that NP-Complete problems are almost certainly not solvable 

in polynomial time (by which I mean: virtually all researchers believe that we 

will never find a polynomial time algorithm for any NP-Complete problem).  

However, NP-Complete problems are all solvable by a simple algorithm: try 

every possible solution to see if any of them works.  Since the number of 

potential solutions to examine can be exponentially large (for example, a 

Boolean expression with n literals has  possible truth assignments), this Brute 

Force and Ignorance approach is not a polynomial time algorithm.

Even though we cannot do better than exponential time complexity for solving 

NP-Complete problems, we can still apply some smarts to improve the 

algorithms.  As an example, we will now examine a way to greatly improve on 

the BFI algorithm for Subset Sum.

The Subset Sum problem:  Given a set S of n integers and a target value k, does

S have a subset that sums to k?

The BFI algorithm simply examines every subset of S to see if any of them sums 

to the target value k.  Since S has  subsets, this algorithm runs in O( ) time.   

(You may wonder why I don't include a time factor for computing the sum of 

each subset - in fact, the sum of each subset can be computed in constant time.  

Exercise: see if you can see how to do this.)



To see how we can improve on this, we first need to consider a much simpler 

problem.

Pair-Sum: Given a set S of n integers and a target integer k, does S contain a pair

of values that sum to k?

Pair-Sum is obviously solvable in polynomial time: we can simply compute the 

sum of each pair of values in S, of which there are  

which is in  

But a better algorithm for Pair-Sum is to start by sorting S, then work through 

the sorted list from both ends, eliminating values when we determine they 

cannot be in a pair that sums to k.

Suppose the sorted set looks like this (drawn as if it is stored in an array)

We start by adding computing .  There are three possibilities:

 : in this case we can stop … we have found a pair that sums to k.

 : in this case we know  cannot be in a solution – adding  together 

with any other element of S will give a total < k.

 : in this case we know  cannot be in a solution – adding  together

with any other element of S will give a total > k

Thus after one addition, we either stop with a solution or we eliminate either the

smallest or the largest element of the set.  We can now continue in exactly the 

same way on the remaining n-1 elements.



In pseudo-code, this algorithm looks like this:

Given S and k:
Sort S # S is indexed from 1 to n because I don’t like 

# 0-based addressing
# Sorting takes O(n*log n) time

left = 1
right = n
while left < right:

t = S[left] + S[right]
if t == k:  Report “Yes” and exit
elsif t < k: left++
else: right++

Report “No” and exit

The loop executes < n times and each iteration takes constant time, so the 

algorithm runs in O(n*log n) + O(n) time, which simplifies to O(n*log n)

So we have reduced the O( ) time of the naïve algorithm to O(n*log n) for this 

clever algorithm.   It may not seem like much but for large values of n this is a 

huge improvement.

But we still haven’t seen how to improve the algorithm for the general subset 

sum problem!  Bear with me for one more preliminary problem.

2-Set Pair-Sum:  Given sets X and Y with n elements in each set, and a target 

integer k, is there an   and a   such that x + y = k?

It should be clear that we can solve 2-Set Pair-Sum in O(n log n) time.  We sort 

both sets, then start by letting  .  As before, if  we are done, if

 we can eliminate , and if  we can eliminate 



At last we are ready to attack Subset Sum in all its glory.  This very clever 

method was first described by Horowitz and Sahni.

Given set S and target integer k:

Split S arbitrarily into two equal sized subsets  and .  
  #If S has an odd number of elements, make the split as even as possible. 
  #It doesn't matter which of  or  is bigger in this case.

# If S does have a subset T that sums to k, there are three possibilities:
#    - all the elements of T are in 
#    - all the elements of T are in 
#    - some elements of T are in  and some are in 

Compute the sums of all subsets of .   Let this set of sums be  
Compute the sums of all subsets of .   Let this set of sums be  

if k   or k  :
report "Yes" and stop # this takes care of the first two 

# possibilities
else:

# we need to determine if there is a subset of  that 

#  can be combined with a subset of  to give a sum of k.
# This is equivalent to asking if there is an   and        

#      and a  such that  … it is an instance of
#      the 2-Set Pair-Sum problem 

           Sort  into ascending order 
- label the elements    ...

  Sort  into ascending order 
- label the elements 

       Let left = 1     and  let right = length( )
       while left  length( ) and right  1:

t = [left] + [right]
if t == k:

report "Yes" and exit
elsif t < k:

                   # this means that [left] is too small to be in any 
# solution to the problem
left++

else:   
                  # this means that [right] is too big to be in any

# solution
right--       

report "No"

You should convince yourself that this algorithm correctly solves Subset Sum in 

all cases, for “Yes” and “No” answers.  We now determine its complexity.



Computing the sets   and  takes   time since each of  and  has   

elements.   and  each have   elements.  Sorting each of  and  takes

 time, which simplifies to   .  The loop iterates at 

most   times, doing constant-time work on each iteration.

Thus the dominant step is the sorting of   and , and the entire algorithm 

runs in    time.

This is still exponential (some call it sub-exponential because the exponent is < 

n) but it is way better than the BFI algorithm.   This table shows the first few 

values in the comparison (with n even, to make it easy on my brain).

2 4 4

4 16 16

6 48 64

8 128 256

10 320 1024

12 768 4096

What made this work?  It was the result of splitting S into  and , thereby 

reducing the number of subsets we had to sum from  to   … and then 

using the 2-Set Pair-Sum algorithm to eliminate combinations.



Some very interesting questions came up in class and after class:

Can we improve the efficiency even more by splitting S into a larger group

of smaller sets – such as  each of size   ?  This sounds good – the 

number of subsets we actually look at is reduced to .  But now we have to 

consider combining subsets from every combinition of  (for 

example, we need to check all sums containing one value from , one value 

from  and one from , and all sums containing one value from  and one 

value from , etc.)  This balances out the time we saved by making the sets 

smaller.

Can we improve the efficiency even more by using the same technique 

recursively to see if  or  contains a subset that sums to k?   Yes we can, but 

these are not the time-critical steps of the algorithm.  The step that looks for a 

solution involving part of  and part of  will still have the same complexity. 

Can we improve the efficiency even more by not only computing the sum 

of the smallest value in  and the largest value in , but also computing the 

sum of the largest value in  and the smallest value in ?   Yes, this lets us 

eliminate two values on each iteration, which cuts the maximum number of 

iterations by a factor of 2.  However we do twice as much work in each iteration 

so it balances out.

Does that mean that this algorithm cannot be improved?  Not at all!!!  This is just

the best algorithm I know of for this problem – you could be the person who 

discovers a better one.

(If you enjoy working on this kind of problem, here is a good one:  “Powers of 

2” Subset Sum.   Given a collection of integers S, in which each element is a 

power of 2 (repetitions allowed), and an integer k, does S have a subset that 

sums to k?   For example,   .  For this 

instance the answer is “Yes” because .   The question 

is, Is this problem NP-Complete, or can you find a polynomial time algorithm 

for it?)



Our next unit focuses on problems where dividing the problem into 

subproblems then combining the solutions leads to efficient algorithms.

Divide and Conquer Algorithms

The Divide and Conquer Paradigm

To solve a problem of size n:

        If n is "small":

             solve the problem directly

        else:

            Subdivide the problem into two or more (usually disjoint) subproblems

            Solve each of the subproblems recursively

            Combine the subproblem solutions to get the solution to the original 

problem

Examples of D&C algorithms are familiar to everyone who has studied 

computing:  binary search, Quicksort, and Mergesort are classic examples.

In our next class we will look at a possibly less-familiar application of D&C:

 determining if a tree contains a path of length k or more.  (Note: the length of a 

path is the number of edges in the path.)

This is a particularly interesting problem because the more general problem 

“Given a graph G and an integer k, does G contain a path of length k?” is NP-

Complete.  We will see that by restricting the problem to trees, we can solve it 

very quickly.


